



#### KEYWORD, SEQUENCE, IMPORTANCE (KSI):

**An Innovative Technique for Quality Theses and Publications** 

Free Exclusive 3-Part Webinar Series on an Innovative Technique for Research Writing





#### Speaker:

#### Dr. Ahmed Abubakar

Universiti Putra Malaysia, Malaysia (UPM). Sule Lamido University, Nigeria.



# KEYWORD SEQUENCE IMPORTANCE (KSI)

A NOVEL METHOD FOR SCIENTIFIC WRITING







### KEYWORD, SEQUENCE, IMPORTANCE (KSI)





Keyword, Sequence, Importance (KSI)





**KEYWORD** 

Key point for research



**SEQUENCE** 

Organize information in order



**IMPORTANCE** 

% weightage of information for key word



#### Research words and non-research words

#### Research words

Impact on your research: e.g., Subject/respondent, Treatment/IV, Parameter/DV. Typically, this category of words are expressed by nouns.

#### Example:

"Effect of the biofertilizer rates on improved rice production"

<u>RW:</u> rice (subject), biofertilizer rates (treatment) and production (parameters)

NRW: effect (noun), of (preposition), the (article), on (preposition) and improved (adjective)

#### Non-research words

No impact on your research: the words that are used to structure a meaningful title. e.g., Effect, impact, of, on, and, efficiency, characterization

#### Example:

"Current agricultural knowledge, attitude and practices, and its relationship on work performance of Bambara groundnut farmers"

<u>RW:</u> Bambara groundnut farmers (respondent), work performance (DV), KAP (IV)

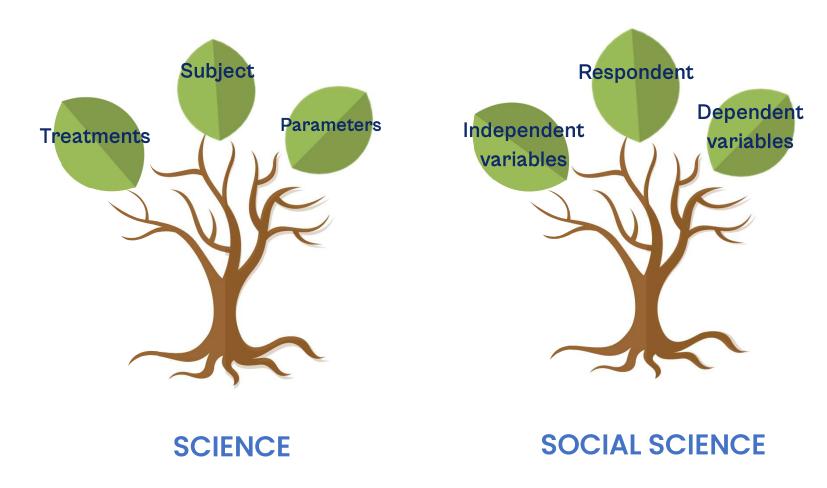
NRW: Current, and practices, its relationship, on non research words



**Subject** is the element on which focus of the research. *E.g., Rice, Fish, Oil Palm, Cancer Patient.* 

**Treatment** is a variable that stands alone and isn't changed by the other variables that are measured. *E.g., Fertilizer, Paracetamol, Salinity, Herbicide, Pesticide.* 

Application of any materials which is impose to subject to find out its effect on subject *is called parameter*. *E.g., Plant Height, Yield, N, P, Fever*.


**Respondents** are those persons who have been invited to participate in a particular study and have actually taken part in the study. *E.g., Rice Farmer, Male Patient.* 

**Independent variables** are variables that stand alone and aren't changed by the other variables that are measured. *E.g., Knowledge, Attitude, Behaviour.* 

The dependent variables are the variables being tested and measured in a study. *E.g., Work Performance of Knowledge, Attitude, Behaviour.* 



#### **KEYWORD SOURCE FOR SCIENCE AND SOCIAL SCIENCE**





# Selection of Key Words using Subject, Treatment, Parameters and Part of Speech

EFFECT OF FERTILIZER (T) ON ANTIOXIDENT, NUTRIENT (P) COMPOSITION AND YIELD (P) OF RICE (S)

| RESEARCH<br>WORD        | Part of Speech | NON-<br>RESEARCH<br>WORD | Part of Speech |
|-------------------------|----------------|--------------------------|----------------|
| Rice (subject)          | Noun           | Effect                   | Verb/Noun      |
| Fertilizer (treatment)  | Noun           | of                       | Preposition    |
| Yield (parameter)       | Noun           | on                       | Preposition    |
| Antioxidant (parameter) | Noun           | and                      | Preposition    |
| Nutrient (parameter)    | Noun           | Composition              | Noun           |

# KEYWORD SEQUENCE FOR SCIENCE AND SOCIAL SCIENCE

To prepare:

INTRODUCTION AND LITERATURE REVIEW

Proper sequence will be:

SUBJECT/RESPONDENT CITATIONS



TREATMENTS/IVS CITATIONS



PARAMETERS/DVs CITATIONS

Total number of keywords for publication will be 5-6 Total number of keywords for THESIS will be 6-10





# T-S-P, T-P-S, P-T-S, P-S-T, S-T-P, S-P-T = 6 model R-IV-DV, R-DV-IV, DV-IV-R, DV-R-IV, IV-R-DV, IV-DV-R

#### STP MODEL FOR PARAPHRASING IN TITLE

Effect of rice husk biochar (T) on yield (P) and nitrogen use efficiency (P) of rice (S).

Response of rice (S) yield (P) and nitrogen use efficiency (P) influenced by rice husk biochar (T).

Yield (P) and nitrogen use efficiency (P) of rice (S) influenced by rice husk biochar (T).

Effect of rice husk biochar (T) on rice (S) yield (P) and nitrogen use efficiency (P).



To prepare
INTRODUCTION,
LITERATURE
REVIEW
% importance
volume
for Parameters/DV
will be more (5060%)

#### **SCIENCE**

| Keyword        | Ratio | % Importance |
|----------------|-------|--------------|
| Subject matter | 1     | 10           |
| Treatment      | 3     | 30           |
| Parameters     | 6     | 60           |
| Total          | 10    | 100          |

#### **SOCIAL SCIENCE**

| Keyword                  | Ratio | %Importance |
|--------------------------|-------|-------------|
| Target respondent        | 2     | 20          |
| Independent<br>variables | 3     | 30          |
| Dependent variable (s)   | 5     | 50          |
| Total                    | 10    | 100         |

IT MAY VARY FROM TOPIC TO TOPIC

#### **EXAMPLE OF CITATION FOR SCIENCE RESEARCH**

| Type of citation                    | Identification                             | Tense   | Value | Example                                                                                            |
|-------------------------------------|--------------------------------------------|---------|-------|----------------------------------------------------------------------------------------------------|
| Subject citation                    | T and P absent  No value or unit (eg,3 Kg) | Present | No    | Rice (S) is our staple food<br>(Uddin 2019                                                         |
| Treatment citation                  | S and P absent  No value or unit (eg,3 Kg) | Present | No    | Salinity (T) is environmental factors of plants-(Uddin 2019                                        |
| Parameter citation for Introduction | S, T and P present                         | Past    | No    | Yield (P) of rice (S) was<br>decreased due to salinity (T)<br>(Uddin 2019                          |
| Parameter citation for discussion   | S, T and P present                         | Past    | Yes   | Yield (P) of rice (S) was decreased 50% due to salinity level 10 dSm <sup>-1</sup> (T) (Uddin 2019 |

If need data to reflect subject/treatment citation then will be in past tense.

In 2018-2019 rice (Subject) production Was 10 million in Malaysia (M et al, 20020)



#### **EXAMPLE OF CITATION FOR SOCIAL SCIENCE RESEARCH**

| Type of citation           | Identification       | Tense   | Example                                                                                                               |
|----------------------------|----------------------|---------|-----------------------------------------------------------------------------------------------------------------------|
| Respondent (R)             | IV and DV absent     | Present | Bambara farmers (R) like to adopt good technology for high yield (Idris 2019)                                         |
| Independent variables (IV) | R and DV absent      | Present | Bambara farmers accept the irrigation technology due to good knowledge (IV) (Idris 2019)                              |
| Dependent variable (DV)    | R, IV and DV present | Past    | 90% of Bambara farmers (R) fertilizer application performance (DV) was higher due to high knowledge (IV) (Idris 2019) |

If need data to reflect Respondent/IV citation then will be in past tense.
In 2018-2019 Bambara (Subject) production farmers in Nigeria Was 10 million (M et al, 20020).



#### PARAMETER CITATION, MODIFICATION, AND APPLICATION

| Original citation           | Modified citation                      |                                 |  |
|-----------------------------|----------------------------------------|---------------------------------|--|
|                             | Modification1 by using                 | Modification2                   |  |
|                             | relative data                          | general                         |  |
| Uddin et al. (2019) showed  | Uddin et al. (2019) reported that the  | The yield (P) of rice (S)       |  |
| that the highest yield (P)  | highest (250 kg N/ha) (T) dose of N    | increased with the increasing   |  |
| (4.50 t/ha) of rice (S) was | produced 136.84% higher rice (S) yield | dose of N fertilizer (T) (Uddin |  |
| recorded from the T5 (250   | (P) compared to the control treatment. | et al., 2019).                  |  |
| kg N/ha) (T).               |                                        |                                 |  |
| Use for Discussion          | Use for Discussion                     | Use for Introduction            |  |
| Parameter citations         |                                        | Parameter citations             |  |
| for discussion will be      |                                        | for introduction will be        |  |
| specific result             |                                        | general trend and not           |  |
|                             |                                        | result                          |  |





# CITATION FROM PUBLISHED ABSTRACT





check for updates

Citation: Haque, A.N.A.; Uddin,

M.K.; Sulaiman, M.F.; Amin, A.M.;

M. Assessing the Increase in Soil

Nutriesz Enhancement of Different

Organic Amendments in Padely Soil Agriculture 2023, 12, 44. https://

dot.org/10.3390/agriculture11010044

Publisher's Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

Copyright: @ 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY). license (https://

meativecommons.org/licenses/by/

Received: 6 December 2020

Accepted: 6 January 2021

Published: 9 January 2021

nal affiliations.

Moisture Storage Capacity and

Hossain, M.; Zaibon, S.; Mosharrof,



Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil S

Ahmad Numery Ashfaqul Haque <sup>1,2</sup>, Md. Kamal Uddin <sup>1,8</sup>, Muhammad Firdaus Sulaiman <sup>1</sup>, Adibah Mohd Amin <sup>1</sup>, Mahmud Hossain <sup>3</sup>, Syaharudin Zaibon <sup>1</sup> and Mehnaz Mosharrof <sup>1</sup>

- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangce, Malaysia; numerybout@gmail.com (A.N.A.I.); mohdfirdaus@upm.ech.my (M.ES.); adibahamin@upm.ech.my (A.M.A.); syaharudin&typm.ed.ung (S.Z.); mmd.enhaza@gmail.com (M.M.)
- Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; mahmud.ss@bau.edu.bd

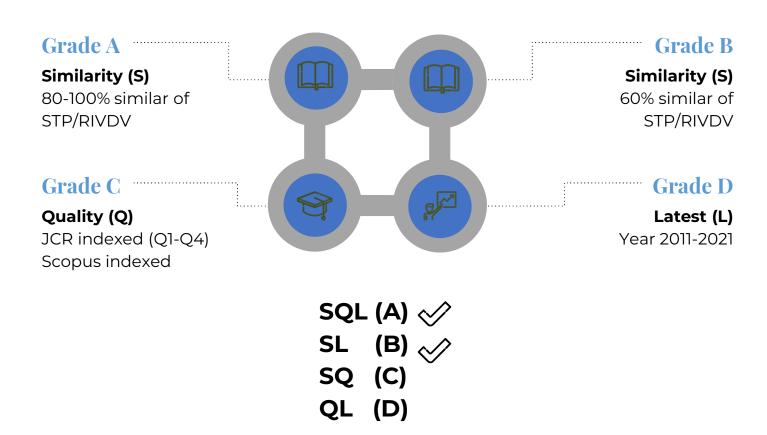
Correspondence: mkuddin07@gmail.com \_ Ahmed et al. 2020

Abstract: Increasing soil moisture storage capacity is a strategy that can be implemented to minimize the use of water in paddy rice cultivation rganic materials from different sources have the potential to increase soil moisture storage and nutrient enrichmental An incubation study was conducted to evaluate the incorporation of five selected organic amendments—as follows: rice husk biochar (RHB), oil palm empty fruit burch biochar (EFBB), compost (COMP), rice husk ash (RHA), and oil palm bunch ash (PBA), with a control (no amendment) on soil moisture storage and some chemical properties of soil. The soil was incubated with five amendments for 60 days and sampled at 15-day intervals. After completion of the incubation, a greater extent of gravimetric water content was observed from RHB (0.46 g g-1) and EPBB (0.45 g g-1) followed by compost (0.40 g g-1) The addition of organic amendments significantly influenced soil chemical properties. Maximum soil pH was altered by PBA followed by EFBB compared to its initial value (5.0 The inclusion of EFBB finally contributed to the highest amount of total carbon (7.82%) and nitrogen (0.44%) The addition of PBA showed the highest available P and exchangeable K followed by RHB when compared with the amendment The results indicated that RHB, EFBB, and compost retain more soil moisture compared to ash sources and added soil nutrients, indicating their potential to improve the chemical and hydrological properties of paddy soil Ahmad et al 2020

Keywords: rice; biochar; nutrient content; gravimetric water; scanning electron microscopy

1. Introduction Subject (Past)

Riccus one of the most widely grown creals in the world and serves as a staple for half of the world's population, particularly in developing countries. In 2017, approximately 748 million tons of riccus eroproduced over the world, requiring more than 160 million ha of land [1]. Rice is the largest consumer of water and it consumes about 34–43% of irrigation water over the world [2]; producing one kilogram of rice requires 3000 to 5000 L of water [3]. Furthermore, water for agricultural purposes becoming scarce due to climate change and rapid industrialization and urbanization presents a challenge to farmers regarding the production of more rice per unit of land with limited water [4]. Continuous flooding irrigation system require large quantities of water for rice, and a larger amount of water is lost through evaporation, percolation, and seepage [5]. Many modifications in rice cultivation, such as aerobic rice, there is called the sample of the changing dimenter conditions of the earth [6]. Under the circumstators, the approach of using different organic amendments


Tizeatment (Provint)

Agriculture 2021, 11, 44. https://doi.org/10.3390/agriculture11010044

https://www.mdpi.com/journal/agriculture



#### **SQL Model for Journal Selection using STP/RIVDV**



#### Methodology



• Start with basic experimental details, for example:

Type of Experiment: Field/Lab/Laboratory

Location of the study (with latitude and longitude, if field trial)

Experimental Design (e.g., CRD/RCBD/Split-plot etc.)

Plot size (in case of field experiment), and pot dimensions (plot study)

- Treatments details
- Number of replications per treatment
- Subject details (e.g., crop(s), variety(ies) etc.)
- Agronomic, fertilization and irrigation scheduling details
- Agronomic parameters to be recorded, with their detailed procedure (in case of thesis), and brief (in case of publication)
- Green house data (light intensity/temperature/humidity) to be recorded for every 2 hrs
- Laboratory analysis to be performed, with their detailed procedure (in case of thesis), and brief (in case of publication)

#### Methodology



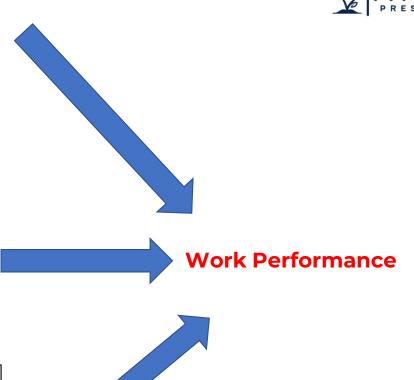
- Describe the research protocol with logical order (usually chronological order)
- Provide Reference for each method, e.g., Protein analysis according to Uddin et. al,
   (2018)
- Methodology and procedure should be written in details
- In case of modification of a method, provide the reference. If the modification has been made by you, clearly describe the component which has been modified with the strong justification for modification
- Statistical Analysis for the result should be described with:
  - Type of Test performed (e.g., ANOVA, Correlation, Regression etc.),
  - Mode of Comparison (e.g., LSD, Tukey etc.)
  - Probability value
  - Software used

# Framework for Social Science **Published Theory**

#### Theory of Work Performance

(Blumberg and Pringle, 1982)

- 1. Capacity
- 2. Willingness
- 3. Opportunity


#### AMO Model (Bailey, 1993)

- 1. Ability (A)
- 2. Motivation (M)
- 3. Opportunity (O)

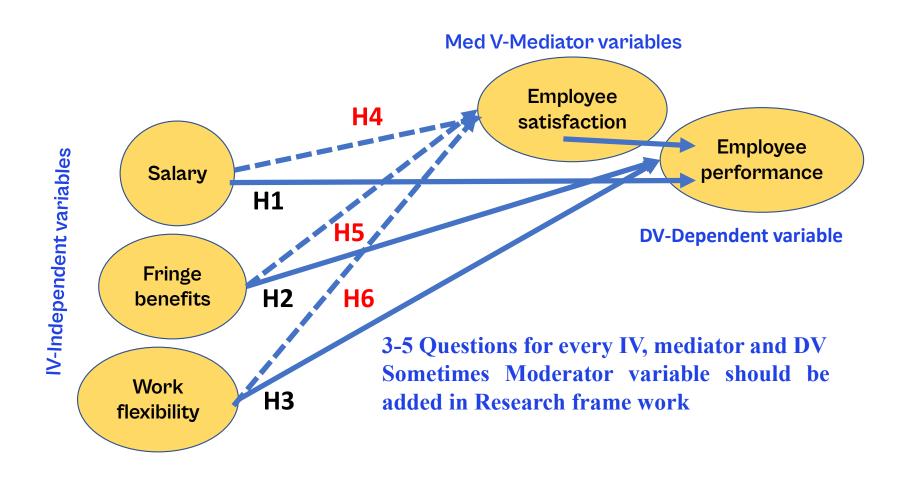
## Technology Acceptance Model (TAM) (Davis Jr, 1986)

- 1. Perceived Usefulness (PU)
- 2. Perceived Ease of Use (PEU)





#### **Conceptual Research Framework**




#### **IV-Independent variables**

#### **DV-Dependent variable** Knowledge **H1** Farmers' performance **H2** of knowledge, **Attitude** attitude, motivation, ease to use **H3** technology **Motivation H4** Ease to use of 3-5 Questions for every IV and DV technology

#### **Conceptual Research Framework**





Common words bank for objectives

ENGLISH
BANK
FOR
RESEARCH

Special words bank for literature review

Common words bank

If need please email mkuddin07@gmail.c om

First sentence bank for each parameter



#### **COMMON WORDS BANK**



| Parameter-1  | Showed       | Started     | Found              |
|--------------|--------------|-------------|--------------------|
| Parameter-2  | Presented    | Conducted   | Observed           |
| Parameter-3  | Resulted     | Established | Obtained           |
| Parameter-4  | Described    | Organized   | Illustrated        |
| Parameter-5  | Differed     | Plotted     | Displayed          |
| Parameter-6  | Revealed     | Led         | Produced           |
| Parameter-7  | Stated       | Laid out    | Appeared           |
| Parameter-8  | Mentioned    | Explained   | Gave/given         |
| Parameter-9  | Discussed    | Studied     | Got                |
| Parameter-10 | Investigated | Carried out | Evidenced/evident  |
| Parameter-11 | Examined     | Performed   | Influenced         |
| Parameter-12 | Evaluated    | Planned     | Yielded, generated |
| Parameter-13 | Opined       | Structured  | Recorded           |
| Parameter-14 | Determined   | Designed    | Registered         |
| Parameter-15 | Delineated   | Regulated   | Generated          |



| Anticipate | Define       | Formulate   |
|------------|--------------|-------------|
| Arrange    | Decrease     | Intensify   |
| Assemble   | Demonstrate  | Illustrate  |
| Assess     | Describe     | Investigate |
| Build      | Design       | Measure     |
| Categorize | Discover     | Motivate    |
| Classify   | Discriminate | Organize    |
| Compare    | Display      | Quantify    |
| Conduct    | Establish    | Solve       |
| Construct  | Estimate     | Stimulate   |
| Contrast   | Explain      | Summarize   |
| Coordinate | Evaluate     | Study       |
| Determine  | Elaborate    | Translate   |
| Delineate  | Express      | Understand  |

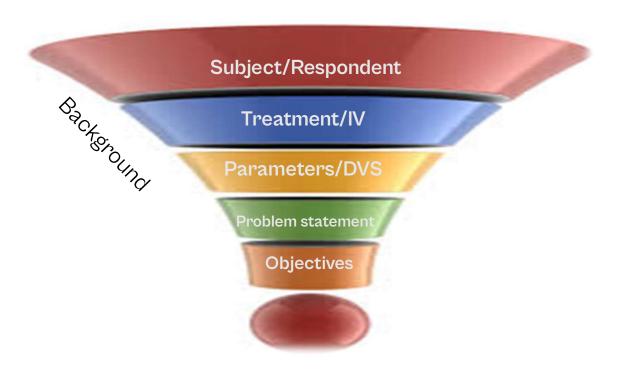




#### TOTAL CITATIONS NUMBER FOR INTRODUCTION

| Master's Thesis               | PhD Thesis                     | Publication or Single Experiment |
|-------------------------------|--------------------------------|----------------------------------|
| Science (40 citations)        | Science (50 citations)         | 30 citations                     |
| Social Science (80 citations) | Social Science (100 citations) | 40 citations                     |

**10 CITATIONS/PAGE** 


TIME NEW ROMAN, 12 font, DOUBLE SPACE (MS word file)

TOTAL LINEs NO-20 10 citation = 20 lines So 1 citation = 2 lines

#### **INTRODUCTION (BPO MODEL)**

ATA PRESS

- Typically should be FUNNEL shaped
- Moving from general to specific



#### **Introduction total citations = 30 (Background)**



Title: Fertilizer effect on antioxidant, nutrient composition, and yield of rice

Keywords: Rice, Fertilizer, Nutrient, Antioxidant, Yield

| Keywords sequence | % Importance | Source    | Citation<br>no |
|-------------------|--------------|-----------|----------------|
| Rice              | 10           | Subject   | 3              |
| Fertilizer        | 30           | Treatment | 9              |
| Nutrient          | 10           | parameter | 3              |
| Antioxidant       | 30           | parameter | 9              |
| Yield             | 20           | parameter | 6              |
| Total             | 100          | 30        | 30             |



#### **PROBLEM STATEMENT**

#### **PGCSN Model**

| ITEM                                  | Citation/ own word | Tense   | % Importance | Ratio |
|---------------------------------------|--------------------|---------|--------------|-------|
| Previous work (P)                     | Citation           | Past    | 40           | 3     |
| Gaps in literature with your work (G) | Own words          | Present | 20           | 2     |
| Challenges (C) and<br>Overcome        | Own words          | Present | 20           | 2     |
| Significant of study (S)              | Own words          | Present | 15           | 1.5   |
| Novelty of your work (N)              | Own words          | Present | 5            | 0.5   |

#### Title: Fertilizer effect on antioxidant, nutrient composition, and yield of rice



Keywords: Rice, Fertilizer, Nutrient, Antioxidant, Yield

| ITEM                                  | Source                                                        | Remarks                                             |
|---------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| Previous work (P)                     | Specially key words parameters (Nutrient, antioxidant, yield) | Latest (5 years)                                    |
| Gaps in literature with your work (G) | Specially key words parameters (Nutrient, antioxidant, yield) | Treatment effect                                    |
| Challenges (C) and<br>Overcome        | Specially key words parameters (Nutrient, antioxidant, yield) | Potential<br>technology/method<br>approach          |
| Significant of study (S)              | Specially key words parameters (Nutrient, antioxidant, yield) | Food security and safety, ecofriendly, economically |
| Novelty of your work (N)              | Specially key words parameters (Nutrient, antioxidant, yield) | Why novel and specific contribution                 |







#### Article

#### Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil

Ahmad Numery Ashfaqul Haque 1.2, Md. Kamal Uddin 1.\*, Muhammad Firdaus Sulaiman 1, Adibah Mohd Amin 1, Mahmud Hossain 3, Syaharudin Zaibon 1 and Mehnaz Mosharrof 1

- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia,
- Selangor, Malaysia; numerybau@gmail.com (A.N.A.H.); muhdfirdaus@upm.edu.my (M.F.S.);
- adibahamin@upm.edu.my (A.M.A.); syaharudin@upm.edu.my (S.Z.); mmd.mehnaz@gmail.com (M.M.)
- <sup>2</sup> Bangladesh Institute of Nuclear Agriculture (BINA), 2202 Mymensingh, Bangladesh
- 3 Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, 2202 Mymensingh, Bangladesh; mahmud.ss@bau.edu.bd
- \* Correspondence: mkuddin07@gmail.com

Abstract: Increasing soil moisture storage capacity is a strategy that can be implemented to minimize the use of water in paddy rice cultivation. Organic materials from different sources have the potential to increase soil moisture storage and nutrient enrichment. An incubation study was conducted to evaluate the incorporation of five selected organic amendments—as follows: rice husk biochar (RHB), oil palm empty fruit bunch biochar (EFBB), compost (COMP), rice husk ash (RHA), and oil palm bunch ash (PBA), with a control (no amendment) on soil moisture storage and some chemical properties of soil. The soil was incubated with five amendments for 60 days and sampled at 15-day intervals. After completion of the incubation, a greater extent of gravimetric water content was observed from RHB (0.46 g g<sup>-1</sup>) and EFBB (0.45 g g<sup>-1</sup>) followed by compost (0.40 g g<sup>-1</sup>). The addition of organic amendments significantly influenced soil chemical properties. Maximum soil pH was altered by PBA followed by EFBB compared to its initial value (5.01). The inclusion of EFBB finally contributed to the highest amount of total carbon (7.82%) and nitrogen (0.44%). The addition of PBA showed the highest available P and exchangeable K followed by RHB when compared with the amendments. The results indicated that RHB, EFBB, and compost retain more soil moisture compared to ash sources and added soil nutrients, indicating their potential to improve the chemical and hydrological properties of paddy soil.

Keywords: rice; biochar; nutrient content; gravimetric water; scanning electron microscopy

Citation: Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Zaibon, S.; Mosharrof, M. Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil. Agriculture 2021,

https://doi.org/10.3390/agric ulture11010044

Received: 6 December 2020

#### 1. Introduction

Rice is one of the most widely grown cereals in the world and serves as a staple for half of the world's population, particularly in developing countries. In 2017, approximately 748 million tons of rice were produced over the world, requiring more than 160 million ha of land [1]. Rice is the largest consumer of water and it consumes about 34%-43% of irrigation water over the world [2]; producing one kilogram of rice requires 3000 to 5000 L of water [3].

Accepted: 6 January 2021 Published: date

Subject



**Treatments** 

**Parameters** 

Every year, about 4 million tons of crop residue is produced over the world and burnt in the open air to produce ash [7], which is a source of organic amendment though its contributions to environmental pollution. In the effort to overcome environmental issues, biochar production has great potential—it is a material produced by thermal disintegration of biomass at low temperature (below 700 °C) under limited oxygen conditions which is enriched in carbon and porous by nature

[8]. Rice processing industries produce a large quantity of rice husk; after processing, this rice husk biochar has the potential to be used as an organic amendment to enhance the physicochemical properties of soil [10] or rice husk ash can be used for the same. In Malaysia, residue generated from oil palm has great scope for producing biochar (as the main product), empty fruit bunch biochar (EFBB) (which is readily available) [11] or ash produced from oil palm bunch, which is an efficient liming material and also adds nutrients when applied to soil [12].

Application of organic waste either for plant nutrient supply or disposal purposes exerts favorable hydrological properties of soil for crop production and also improves soil structure, porosity, and reduces erosion [13]. Every 1% increase in organic matter increases the soil capacity up to 16,500 gallons of available water per acre [14]. By the application of biochar, the soil is enriched with organic matter as well as organic carbon content and also adds nutrients such as nitrogen, potassium, phosphorus, and magnesium [15,16]. Biochar also contains different kinds of alkaline material which help in raising soil pH of acidic soil and it also alters soil physical properties and enhances soil aggregates and moisture retention [17,18] and helps to improve soil health [19]. Biochar enhances soil moisture storage in two ways: firstly, by changing pore size distribution and aggregation and, secondly, through conserving moisture in pores [20]. Ash produced from direct burning of biomass used as a soil amendment is a common practice; it contains less nitrogen but is dense with other plant nutrients and it also can be used as a liming agent [21]. The application of wood ash increases water availability and also partially supplies nutrients to plants reported by Bonfim-Silva et al. [22]. Compost is one of the most widely used soil amendments enriched with different plant nutrients, and the inclusion of compost in the soil increases the cation exchange capacity and reduces nutrient leaching into sub-soil [23]. The incorporation of compost decreases bulk density, enhances porosity and improves soil water retention properties, such ashydraulic conductivity, plant available water, and water content, as reported by Kranz et al. [24].

Previous

work

Gaps in liteature

Challenges

Significance

Novelty

Water for agricultural purposes becoming scarce due to climate change and rapid industrialization and urbanization presents a challenge to farmers regarding the production of more rice per unit of land with limited water [4]. Continuous flooding irrigation systems require large quantities of water for rice, and a larger amount of water is lost through evaporation, percolation, and seepage [5]. Many modifications in rice cultivation, such as aerobic rice, direct seeding, alternate wetting, and drying, etc., have been made to save water and are used because of the changing climatic conditions of the earth [6]. Soil organic matter management by adding suitable organic amendments could help retain soil moisture under water limiting conditions. Previous studies mainly focused on the role of organic amendment in the improvement of soil biochemical properties, carbon sequestration, and greenhouse gas emissions etc., but put comparatively less emphasis on its effect on soil moisture retention. The approach of using organic amendments for rice production has great scope in terms of enhancing soil moisture retention capacity because organic wastes not only retain soil moisture but also supply essential nutrients to plants. Therefore, enhancement of water retention capacity of of paddy with improved nutrient availability by inclusion of organic amendment is the main challenge of this study. The addition of a suitable amount of organic amendments in paddy soil may retain more soil water by reducing moisture loss; additionally, it also improves nutrient availability to plants, which facilitates sustainable rice production under water-scarce environments around the earth. The concept of using different organic amendments to increase soil moisture conserving capacity and the consecutive enrichment of soil by essential plant nutrients is a new aspect of this re-

In this context, an incubation study was conducted to investigate the structural and chemical properties of organic amendments (i.e., compost, rice husk biochar and ash, oil palm empty fruit bunch biochar, and oil palm bunch ash) and to compare the capacity of organic amendments to retain soil moisture and nutrient release.



#### **RESULT WRITING TECHNIQUE**









**RESULT WRITING** 





- Present your results in Tables or Figures (not in both forms for an individual parameter)
- Table and figures should have a brief and self-explanatory title/caption.
- If figure better add numerical value also.
- A Table and Figure should stand alone (completely and easily understandable to reader, with all abbreviations explained).
- Data should be presented in Tabular form (if values are important), while should be presented in Figure form (if trend is important).
- Tables or Figures should not be crowded. Large Tables and Figures should be split into components.
- Tables and Figures should be prepared in a consistent format.



#### Sample 1.

The table (5.1) demonstrated the effect of different treatments on pH of the experimental soil. Seven different treatments ( $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$ ,  $T_5$ ,  $T_6$  and  $T_7$ ) were used in this experiment where  $T_1$  was considered as control. The pH in different treatments ranged from 6 to 7.5. The control group ( $T_1$ ) had the lowest pH (6). The pH was significantly highest (7.5) in  $T_6$  followed by  $T_{5 (6.3)}$ ,  $T_{4 (6.5)}$ ,  $T_{3 (6.7)}$  and  $T_{7 (6.8)}$ . The percent increase in pH was doubled in  $T_6$  compared to the  $T_1$ . The percent increases in pH were 20, 40, 50, 70 and 80 in  $T_2$ ,  $T_7$ ,  $T_3$ ,  $T_4$  and  $T_4$ , respectively.

#### Sample 2.

In this study, it was noticed that fish growth performance as well as yield were significantly affected by biochar and lime application ( $p \le 0.05$ ) (Table 1). The yield was higher in T6 (5 t/ha) followed by T2 (4.8 t/ha) while T15 (3 t/ha) recorded the lowest growth performance. However, The yield increased by 13.80% at T7 followed by 8.47% at T6 compare to T1 (30:30).

#### Sample 3.

Relative leaf chlorophyll content or SPAD value of maize measured at panicle initiation and heading stages varied significantly among different treatments (Figure ). In general, SPAD values were recorded higher at heading stage than at panicle initiation stage. At panicle initiation stage, T1 resulted in lower SPAD values (29) compared to other treatments. All the remaining treatments resulted in higher SPAD values ranging from 33.50 to 36.30. At heading stage, highest SPAD value was recorded in T2 (48.87) identically followed by T6 (47.86). T7 resulted in lowest SPAD value (34.17) closely followed by T6 (40.83). The remaining treatments resulted in intermediate SPAD values ranging from 42.79 to 46.80.



#### **RESULT WRITING STEPS**

#### **ITRLHR MODEL**

| Introductory sentence: Sodium (P) content of all turf grass (S) species was significantly influenced by salinity (T) level     | PST |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
| Trend increase/decrease: Sodium content was decreased due to different salinity                                                | PT  |
| range of data:<br>Sodium content range (mg/kg) for treatments was 20-70                                                        | PT  |
| Lowest findings:<br>T1 produced the lowest Na content ( 20 mg/kg) followed by T5 (25 mg/kg)                                    | TP  |
| Highest findings:<br>highest Na content was found in T8 (70 mg/kg) followed by T9 (60 mg/kg)                                   | PT  |
| Relative data:% increase/decrease compare to control  The highest Na content increment was 50% from T8 compared to the control | PT  |



# STRUCTURED SYSTEM RESULT WRITING IFR MODEL

#### **Introductory sentence:**

Sodium (P) content of all turf grass (S) species was significantly influenced by salinity (T) level (Table 1)

#### **Significant findings:**

Highest was found in T8 (70 mg/kg) followed by T9 (60 mg/kg)

#### **Relative data:** % increase/decrease compare to control

The highest Na content increment was 50% from T8 compared to the control



# Specific to a general like reverse funnel shape (opposite of introduction)





| RFMS (O) model                                                                                                                     | % Importance | Tense   |
|------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
| Reason for performing of the study (own words) Review the existing level of knowledge and then find out the knowledge gap          | 5            | Present |
| Brief summary of the main significant findings (result) Only the important parameters/DVs                                          | 50           | Past    |
| Interpret results clearly and concisely with mechanism/Social factors (citations)                                                  | 25           | Present |
| Relate the findings to those of similar studies (citations) Report similar findings of others and relate to your own findings      | 20           | Past    |
| Consider alternative explanations of the findings (citations) for the difference (Option) and explain the possible reasons behind. | 10/0         | Past    |



| RFMS model                                                         | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tense   |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Reason for performing of the study (own words)                     | This study indicates on yield performance due to potential rate of biochar application in maize field                                                                                                                                                                                                                                                                                                                                                                                    | Present |
| Brief summary of the main significant findings                     | Biochar treated plot produced highest yield compare to control treatment.                                                                                                                                                                                                                                                                                                                                                                                                                | Past    |
| Interpret results clearly and concisely with mechanism (citations) | Biochar can hold more water than the soil and can hold nutrients. Biochar has been shown to increase crop yield. Application of biochar improved soil fertility by increasing plant nutrients, pH, carbon and cation exchange capacity, with concomitant suppression of Al <sup>3</sup> -and Mn <sup>2</sup> - activities in the soil solution (M et al 2019). Due to the more N content in biochar treated soil, photosynthesis rate is high than in unamended treatment (M et al 2019) | Present |
| Relate the findings to those of similar studies (citations)        | our findings were consistent with Panhwar et al. (2021), who reported a 35.82% increase of maize yield using biochar 10 t/ha.                                                                                                                                                                                                                                                                                                                                                            | Past    |



| RFMS model                                                        | Example                                                                                                                                                                                                                                                                              | Tense   |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| · · · · · · · · · · · · · · · · · · ·                             | This study indicates that motivation of farmers mainly regulates their performance towards fertilizer application.                                                                                                                                                                   | Present |
|                                                                   | Motivation solely had the highest contribution of 48.6% in predicting farmers' performance towards fertilizer application.                                                                                                                                                           | Past    |
| clearly and concisely                                             | Motivation contributed to farmers' performance towards fertilizer application due to-Economical factor like -higher yield of rice, large farm size, Social factor- education, social status, Organizational factor- extension contact, training, credit facility (Nia et al., 2013). | Present |
| Relate the findings to<br>those of similar<br>studies (citations) | (2021) Who reported a 35.82% increase of rice                                                                                                                                                                                                                                        | Past    |



## **ABSTRACT OF RESEARCH ARTICLE**

#### (IOMFR model)

Title: fertilizer effect on antioxidant, nutrient composition and yield, of rice

Key word: Rice, Fertilizer, Nutrient, Antioxidant, Yield

| Item                                   | Source                                   | %<br>importance |
|----------------------------------------|------------------------------------------|-----------------|
| Introductory importance<br>(Present)   | Subject (Rice)                           | 10              |
| Objective (Present)                    | Parameter (Nutrient, antioxidant, yield) | 5               |
| Brief methodology (Past)               | Treatment (fertilizer)                   | 25              |
| Key finding of major parameters (past) | Parameter (Nutrient, antioxidant, yield) | 50              |
| Recommendation (present)               | Over all                                 | 10              |

- √ 8-10 sentences 200-250 words (Publication)
- ✓ Only one paragraph and No citation







Article

#### Impact of Organic Amendment with Alternate Wetting and Drying Irrigation on Rice Yield, Water Use Efficiency and Physicochemical Properties of Soil

Ahmad Numery Ashfaqul Haque 1,20, Md Kamal Uddin 1,\*0, Muhammad Firdaus Sulaiman 10, Adibah Mohd Amin 1, Mahmud Hossain 30, Azharuddin Abd Aziz 40 and Mehnaz Mosharrof 1

- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; numerybau@gmail.com (A.N.A.H.); muhdfirdaus@upm.edu.my (M.F.S.); adibahamin@upm.edu.my (A.M.A.); mmd.mehnaz@gmail.com (M.M.)
- Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Research and Instrumentation Section, Department of Chemistry Malaysia, Jalan Sultan, Petaling Jaya 46661, Malaysia; azharuddin@kimia.gov.my
- Correspondence: mkuddin07@gmail.com

Abstract: Water-saving irrigation occasionally causes an inconsequential yield loss in rice; thereby, Introductory biochar incorporation in this context has great scope due to its properties, including the release of importance nutrients and improving soil physicochemical properties. A pot experiment was executed to investigate the impact of biochar and compost with water-saving irrigation on the rice yield, water use efficiency, and physicochemical properties of soil. Two irrigation regimes—namely alternate wetting and drying (AWD) and continuous flooding (CF)—and four types of organic amendments OA)—namely rice husk biochar (RHB), oil palm empty fruit bunch biochar (EFBB), compost and a ontrol—were applied to evaluate their effects. Under the AWD irrigation regime, the maximum grain was produced by RHB (241.12 g), whereas under the same organic amendments, both AWD and CF produced a similar grain yield. Under the same organic amendment, a significantly higher water use efficiency (WUE) was observed from the AWDirrigation with RHB (6.30 g  ${
m L}^{-1}$ ) and EFBB Key findings of  $5.80 \mathrm{~g~L^{-1}}$ ). Within the same irrigation regime, soil pH, cation exchange capacity, total carbon, total major parameters nitrogen and available phosphorus were enhanced due to the incorporation of biochar and compost, while higher soil exchangeable potassium was observed under CF irrigation for all treatments. RHB and EFBB significantly reduced the soil bulk density (up to 20.70%) and increased porosity (up to 16.70%) under both irrigation regimes. The results imply that the use of biochar with AWD irrigation ould enhance the nutrient uptake and physicochemical properties of soil and allow rice to produce a ecommendation greater yield with less water consumption.

Keywords: rice; intermittent irrigation; biochar; water use efficiency; soil physicochemical properties



Objective

Brief methodology

## TIPS OF QUALITY REVIEW PAPER



- The topic should be assessed from a new standpoint.
- Recent innovation/information of the research must be addressed.
- Critical analysis of the data must be presented under every sub headline and critically discuss the possible element of debate.
- Future challenges/prospects must be addressed.
- Table(s) should be prepared to summarize recent findings in specific field of research.
- Sketch/Drawing/Figure should be prepared to give an overview of the review at a glance.

## CITATION LAYOUT OF MATERIALS FOR A REVIEW PAPER

## Title: Influence of biochar on GHG emission from agricultural soils, A Review

| Key points                                             | % importance | No of citations |
|--------------------------------------------------------|--------------|-----------------|
| Preparation and function of biochar                    | 5            | 5               |
| Function of biochar                                    | 5            | 5               |
| Chemical Characteristics of biochar                    | 5            | 5               |
| Physical Characteristics of biochar                    | 5            | 5               |
| Effects of biochar on soil physical properties         | 10           | 10              |
| Effects of biochar on soil chemical properties         | 15           | 15              |
| Effects of biochar on soil biological properties       | 5            | 5               |
| Biochar as nutrients source and bio-availability:      | 10           | 10              |
| Effects of biochar application on Soil CO2 emission    | 20           | 20              |
| Effects of biochar application on Soil CH4 emission    | 10           | 10              |
| Mechanisms affecting GHG fluxes with biochar amendment | 10           | 10              |
| Total                                                  | 100          | 100             |



## **ABSTRACT OF REVIEW ARTICLE**

## (IFR model)

Title: fertilizer effect on antioxidant, nutrient composition and yield, of rice

Key word: Rice, fertilizer, Nutrient, antioxidant, yield

| ltem                                               | Source                                   | %<br>importance |
|----------------------------------------------------|------------------------------------------|-----------------|
| Introductory importance<br>(Present)               | Subject (Rice)                           | 20              |
| Summarize findings of some major parameters (past) | Parameter (Nutrient, antioxidant, yield) | 70              |
| Hypothetical Future<br>Recommendation (present)    | Over all                                 | 10              |



- √ 8-10 sentences 200-250 words (Publication)
- ✓ Only one paragraph and No citation





Review

#### Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management

Ahmad Numery Ashfaqul Haque <sup>1,2</sup>, Md. Kamal Uddin <sup>1,\*</sup> Muhammad Firdaus Sulaiman <sup>1</sup>, Adibah Mohd Amin <sup>1</sup>, Mahmud Hossain <sup>3</sup>, Zakaria M. Solaiman <sup>4</sup> and Mehnaz Mosharrof <sup>1</sup>

Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; numerybau@gmail.com (A.N.A.H.); muhdfirdaus@upm.edu.my (M.F.S.); adibahamin@upm.edu.my (A.M.A.); mmd.mehnaz@gmail.com (M.M.)

Abstract: Over half of the world's population depends on rice for its calorie supply, although it consumes the highest amount of water compared to other major crops. To minimize this excess

water usage, alternate wetting and drying (AWD) irrigation practice is considered as an efficient

technique in which soil intermittently dried during the growing period of rice by maintaining

yield compared to a flooded system. Continuous AWD may result in poor soil health caused by

- Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; mahmud.ss@bau.edu.bd
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; zakaria.solaiman@uwa.edu.au

Correspondence: mkuddin07@gmail.com



Academic Editor: Stefano Mocali

Introductory

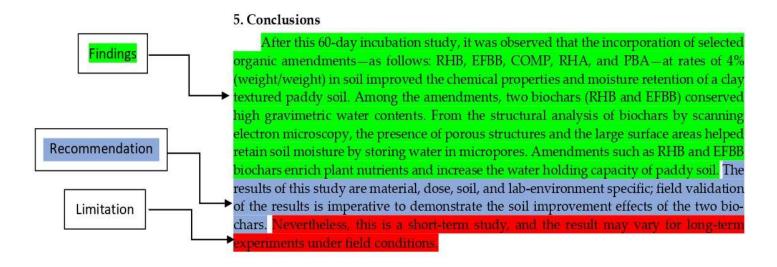
importance

Received: 6 January 2021 Accepted: 18 March 2021 Published: 19 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil-iations.

carbon loss, nutrient depletion, cracking, and affecting soil physical properties. Due to being a potential organic amendment, biochar has a great scope to overcome these problems by improving soil's physicochemical properties. Biochar is a carbon enriched highly porous material and characterized by several functional groups on its large surface area and full of nutrients. However, biochar's implication for sustaining soil physicochemical and water retention properties in the AWD irrigation systems has not been widely discussed. This paper reviews the adverse impacts of AWD irrigation on soil structure and C, N depletion; the potential of biochar to mitigate this problem and recovering soil productivity; its influence on improving soil physical properties and moisture retention; and the scope of future study. This review opined that biochar efficiently retains nutrients and supplies as aslow-release fertilizer, which may restrict preferential nutrient loss through soil cracks under AWD. It also improves soil's physical properties, slows cracking

confirm the extent of biochar impact.


Hypothetical future recommendation

Keywords: rice; biochar; intermittent irrigation; nutrient availability; soil physical properties; water retention

during drying cycles, and enhances waterretention by storing moisture within its internal pores. However, long-term field studies are scarce; additionally, economic evaluation is required to







#### STP MODEL FOR PLAGIARISM REDUCTION

### (ONLY FOR PARAMETER CITATIONS)

Wang et al. (2018) reported that nitrogen use efficiency (P) of rice (S) was enhanced up to 15% by the application of rice husk biochar (T) at 5 t ha<sup>-1</sup>.

Addition of rice husk biochar (T) at 5 t ha<sup>-1</sup> increased the nitrogen use efficiency (P) of rice (S) by 15% was observed by Wang et al. (2018).

From a previous study on rice (S), reported that 15% improved nitrogen use efficiency (P) was exhibited by the inclusion of rice husk biochar (T) at 5 t ha<sup>-1</sup> (Wang et al., 2018).

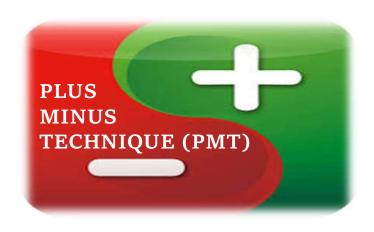
About 15% of boosted nitrogen use efficiency (P) observed by the application of rice husk biochar (T) at 5 t ha<sup>-1</sup> in rice (S) field (Wang et al., 2018).



### SUBJECT MINUS TECHNIQUE FOR PARAMETER CITATION

When writing result first sentence has to cover S, T, and P, while the subsequent sentences should cover only T and P. if you avoid the subject word, it will help in reducing plagiarism in the thesis and publication.

Example, Sodium (P) content of turf grass (S) species was significantly influenced by salinity (T) level. Another example, T1 produced the lowest Na (P) content (20mg/kg) and T8 produced the highest (70 mg/kg).


**Original sentence:** Research was designed to reduce herbicide use by replacing POST herbicides with readily available ocean water to control weeds in turf grasses

**Paraphrase sentence :** The study was planned to decrease herbicide application by **substituting** POST herbicides with **cheap** sea water for





## PLUS MINUS TECHNIQUE (PMT)



# PLUS TECHNIQUE: Add some relevant extra words

Turfgrasses is suitable for mental health and recreation amenity (Juraimi, 2001; Raven et al., 2001).

Turfgrasses are important industries in many countries and its attractiveness is suitable for mental health and recreation amenity (Juraimi, 2001; Raven et al., 2001).

# MINUS TECHNIQUE: Delete unnecessary word/complex sentence, change in simple sentence

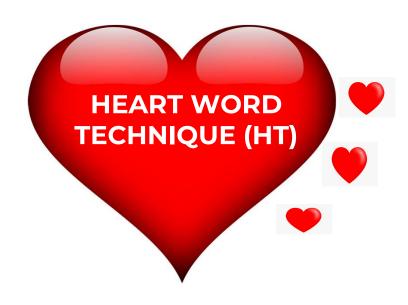
Turfgrasses are among the most important industries in many countries and its attractiveness is suitable for mental health and recreation amenity (Juraimi, 2001; Raven et al., 2001).



## **MERGE TECHNIQUE (MT)**

Turfgrasses are among the most important industries in many countries including Malaysia because of the development in landscaping and recreation amenity (Juraimi, 2001). Turf grass, as an important element to the landscape, serves the functions as beautification and its attractiveness is suitable for mental health (Lorenzi and Souza, 2001; Raven et al., 2001).

Turfgrasses are among the most important industries in many countries and its attractiveness is suitable for mental health and recreation amenity (Juraimi, 2001; Raven et al., 2001).


Turfgrasses is suitable for mental health and recreation amenity (Juraimi, 2001; Raven et al., 2001).



## **Heart Word Technique:**

## Every 3 words have to add new word from heart

Usually Turnitin software identifies plagiarism if more than five or six words are used the same way used in the original text. Therefore, you should enter an additional word and break the five/six word sequence of the original text. For example:



Purslane is a very good source of alpha-linolenic acid. Alpha-linolenic is an omega-3 fatty acid which plays an important role in human growth and development and in preventing diseases.

Purslane is a potential source of alpha-linolenic acid. It plays an important role in human *health* development and in preventing *different* diseases.





(MS) Mental Stress

# Permanent Health Development (PHD)



(MS)
Mental
Satisfactory

# About the Speaker

Dr. Ahmed Abubakar is a distinguished academic with a remarkable breadth of research interests, spanning innovation, agriculture, digitalization, and sustainability. His expertise encompasses the application of artificial intelligence in sustainable agriculture, climate change, sustainable development, and more. Driven by a deep commitment to a sustainable future, he tirelessly pursues both theoretical and applied research. Dr. Ahmed's work extends to collaboration with stakeholders and policymakers, ensuring that his research has a profound realworld impact. Over the past three years, he has focused on revolutionizing oil palm production, enhancing yields, and improving smallholder livelihoods through sustainable methods and community engagement. As an academic at the University Putra Malaysia and Sule Lamido University, his research endeavours have made significant contributions to the understanding of the Sahel region. Dr. Ahmed's dedication and contributions extend to published research in local and international journals, making him a valuable asset in advancing knowledge and sustainable development in Africa.





## **About ATA Press**

ATA Press is a Pan-African open-access academic publisher dedicated to empowering African academic community. At ATA Press, we spotlight the brilliance of African researchers by giving their quality works the reputable platform it deserves.

ATA Press aims to produce high-quality peer-reviewed academic journals, conferences, proceedings and abstracts, books, and other scholarly communications that contribute to the academic enrichment of the continent. We are on an ambitious mission to establish our status as a reputable, innovative, and impact-driven academic publisher in Africa

#### **Contact Information:**

We look forward to collaborating with you on this meaningful mission. Please reach out to us directly at info@atapress.org to get involved.

• Phone: +234-1-330-3365

Email: info@atapress.org

Website: www.atapress.org